Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome analysis of diploid and triploid Populus tomentosa.

Identifieur interne : 000043 ( Main/Exploration ); précédent : 000042; suivant : 000044

Transcriptome analysis of diploid and triploid Populus tomentosa.

Auteurs : Wen Bian [République populaire de Chine] ; Xiaozhen Liu [République populaire de Chine] ; Zhiming Zhang [République populaire de Chine] ; Hanyao Zhang [République populaire de Chine]

Source :

RBID : pubmed:33194408

Abstract

Triploid Chinese white poplar (Populus tomentosa Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid P. tomentosa. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of P. tomentosa varieties in the future. In this study, the cuttings of diploid and triploid P. tomentosa were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid P. tomentosa transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of MDH and CYCD3 in tissue-cultured and greenhouse planted triploid P. tomentosa were higher than those in tissue-cultured diploid P. tomentosa, which was consist ent with the TMM values calculated by transcriptome.

DOI: 10.7717/peerj.10204
PubMed: 33194408
PubMed Central: PMC7602689


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome analysis of diploid and triploid
<i>Populus tomentosa</i>
.</title>
<author>
<name sortKey="Bian, Wen" sort="Bian, Wen" uniqKey="Bian W" first="Wen" last="Bian">Wen Bian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xiaozhen" sort="Liu, Xiaozhen" uniqKey="Liu X" first="Xiaozhen" last="Liu">Xiaozhen Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhiming" sort="Zhang, Zhiming" uniqKey="Zhang Z" first="Zhiming" last="Zhang">Zhiming Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hanyao" sort="Zhang, Hanyao" uniqKey="Zhang H" first="Hanyao" last="Zhang">Hanyao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33194408</idno>
<idno type="pmid">33194408</idno>
<idno type="doi">10.7717/peerj.10204</idno>
<idno type="pmc">PMC7602689</idno>
<idno type="wicri:Area/Main/Corpus">000001</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000001</idno>
<idno type="wicri:Area/Main/Curation">000001</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000001</idno>
<idno type="wicri:Area/Main/Exploration">000001</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome analysis of diploid and triploid
<i>Populus tomentosa</i>
.</title>
<author>
<name sortKey="Bian, Wen" sort="Bian, Wen" uniqKey="Bian W" first="Wen" last="Bian">Wen Bian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xiaozhen" sort="Liu, Xiaozhen" uniqKey="Liu X" first="Xiaozhen" last="Liu">Xiaozhen Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhiming" sort="Zhang, Zhiming" uniqKey="Zhang Z" first="Zhiming" last="Zhang">Zhiming Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hanyao" sort="Zhang, Hanyao" uniqKey="Zhang H" first="Hanyao" last="Zhang">Hanyao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Triploid Chinese white poplar (
<i>Populus tomentosa</i>
Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid
<i>P. tomentosa</i>
. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of
<i>P. tomentosa</i>
varieties in the future. In this study, the cuttings of diploid and triploid
<i>P. tomentosa</i>
were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid
<i>P. tomentosa</i>
transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of
<i>MDH</i>
and
<i>CYCD3</i>
in tissue-cultured and greenhouse planted triploid
<i>P. tomentosa</i>
were higher than those in tissue-cultured diploid
<i>P. tomentosa</i>
, which was consist ent with the TMM values calculated by transcriptome.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33194408</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome analysis of diploid and triploid
<i>Populus tomentosa</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>e10204</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.10204</ELocationID>
<Abstract>
<AbstractText>Triploid Chinese white poplar (
<i>Populus tomentosa</i>
Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid
<i>P. tomentosa</i>
. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of
<i>P. tomentosa</i>
varieties in the future. In this study, the cuttings of diploid and triploid
<i>P. tomentosa</i>
were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid
<i>P. tomentosa</i>
transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of
<i>MDH</i>
and
<i>CYCD3</i>
in tissue-cultured and greenhouse planted triploid
<i>P. tomentosa</i>
were higher than those in tissue-cultured diploid
<i>P. tomentosa</i>
, which was consist ent with the TMM values calculated by transcriptome.</AbstractText>
<CopyrightInformation>©2020 Bian et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Bian</LastName>
<ForeName>Wen</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Liu</LastName>
<ForeName>Xiaozhen</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhiming</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hanyao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GO categories</Keyword>
<Keyword MajorTopicYN="N">KEGG categories</Keyword>
<Keyword MajorTopicYN="N">Populus tomentosa</Keyword>
<Keyword MajorTopicYN="N">RT-qPCR analysis</Keyword>
<Keyword MajorTopicYN="N">Transcriptome analysis</Keyword>
</KeywordList>
<CoiStatement>The authors declare there are no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>8</Hour>
<Minute>51</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33194408</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.10204</ArticleId>
<ArticleId IdType="pii">10204</ArticleId>
<ArticleId IdType="pmc">PMC7602689</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2018 Jan 5;17(1):12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29067805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1536:209-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28132153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 May;10(3):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2020 Apr 1;12(4):413-428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32125373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2005 Nov;16(11):2030-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16471334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2016 Sep 16;7:164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2020 Feb;29(1):125-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31853721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26395035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2019 Aug 1;26(4):353-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31274170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Jun 19;14(6):e0218455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31216332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>R Soc Open Sci. 2019 Nov 13;6(11):191052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31827844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Dec 04;20(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31817197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2018 Nov 14;9:506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30487810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul 31;29(8):762-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2018 Aug;45(4):453-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29626317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Feb;243(2):281-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26715561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2014 Sep;14(3):517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24870810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Jan;30(1):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21104255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Jan 06;14:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24393201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2019 Dec 18;10(1):198-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31988723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 06;9:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29467731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D814-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2019 Dec;294(6):1511-1525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31324970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Nov;43(11):1293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12461129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2018 Jan 1;7(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29220494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2017 Aug;101:747-757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28363656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoolog Sci. 2005 Sep;22(9):1011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Aug;76(6):575-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21614644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 11;15:276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24726045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):893-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9722-E9729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Aug;66(15):4595-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26022252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genomics. 2018 Apr;40(4):349-359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29892838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2019 Mar 12;19(1):99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30866829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2020 May 22;10(1):8549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32444679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2018 Mar;255(2):547-563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28942523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2020 Feb;47(2):170-183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31941563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Mar;19(3):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Dec;92(6):1044-1058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29024088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2019 Mar;39(2):173-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30372634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Bian, Wen" sort="Bian, Wen" uniqKey="Bian W" first="Wen" last="Bian">Wen Bian</name>
</noRegion>
<name sortKey="Liu, Xiaozhen" sort="Liu, Xiaozhen" uniqKey="Liu X" first="Xiaozhen" last="Liu">Xiaozhen Liu</name>
<name sortKey="Zhang, Hanyao" sort="Zhang, Hanyao" uniqKey="Zhang H" first="Hanyao" last="Zhang">Hanyao Zhang</name>
<name sortKey="Zhang, Zhiming" sort="Zhang, Zhiming" uniqKey="Zhang Z" first="Zhiming" last="Zhang">Zhiming Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33194408
   |texte=   Transcriptome analysis of diploid and triploid Populus tomentosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33194408" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020